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A maodel for the coexistence of diffusion and accelerator
modes in a chaotic area-preserving map

A N Yannacopoulos and G Rowlands -
Physics Department, University of Warwick, Coventry CV4 7AL, UK

Received 26 April 1993, in final form 16 August 1993

Abstract. A random walk model for the coexistence of diffusion and accelerator modes for a
* chaotic two-dimensional area-preserving map is constructed and sclved analytically in order to
explain the time behaviour of the numerically calculated diffusion coefficient for such maps.

_ 1. Introduction

Consider an area-preserving chaotic map in x, y which can be brought into a doubly periodic
form, that is, can be written as a map of the unit torus T = [0, 271 % [0, 2=]. For such maps
there exist parts of phase space called accelerator modes [1] where ordered motion occurs
rather than stochastic motion. This ordered motion corresponds to constant acceleration
of particles to remote parts of phase space and this leads to anomalous enhancement of
the diffusion coefficient as calculated for such maps [2,3]. Examples of maps where such
behaviour occurs are the well known standard map [2] or the web map [4,51.
Our aim is to investigate the effect of the existence of such accelerator modes on
“the transport through phase space for an area-preserving map (two-dimensional symplectic
map). The maotivation is to explain the fluctuations observed in the rumerically calculated
diffusion coefficient (p?)/2n where p denotes displacement and n the number of iterates.
Usually the asymptotic value of D for large » is constant. However, for many maps the
-ratio shows oscillatory behaviour andfor variation proportional to n* for large n. A typical
example of the variation of D whth n, obtained by numerical iteration of the web map is
shown in figure 1. Of course the times of interest are. 1onger than the time needed for the
effect of initial conditions to be damped away. :

2. Formulation of the problem

The variation of the diffusion coefficient D with r can have very complicated behaviour,

_ We associate this behaviour with the presence of accelerator modes and with regions of

non-chaotic behaviour in the phase space. However, the exact structure of the phase space
is extremely complicated and some simplification is necessary.

The phase space is modelled as follows. It is assumed to be infinite and two-dimensional.

In the space there exists a periodic array of points which corresponds to accelerator modes

and which forms an infinite orthogonal lattice of points. Whenever a particle reaches such a

point it can make a finite jump to another point of the lattice (that is, to another accelerator

- mogde) rather than diffuse to neighbouring points in the space. We also consider the effects
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Figure 1. A typical numerical calculation of the diffusion coefficient as a function of time for
a map containing accelerator modes.

of the existence of islands surrounding stable periodic points that act as traps in the diffusion
process through phase space. The stable periodic points also form an infinite orthogonal
lattice in phase space. (The infinity of the lattices of both the accelerator modes and the
traps arises becanse of the double periodicity of the original map.) On every other part of
phase space, the motion is approximated by a diffusion process with a constant diffusion
coefficient D, )

Thus particles diffuse through phase space until they reach the vicinity of an accelerator
mode or a stable island (trap). There they can be trapped and start performing finite jumps
to other points of the lattice or remain trapped, according to whether the lattice point is an
accelerator mode or a stable island. Trapping at lattice points occurs for a finite number of
iterations of the map m, with a probability distribution ¥(m). Then detrapping occurs and
the particles are allowed to diffuse again until they are brought by diffusion to the vicinity
of another accelerator mode or island.

- Half the accelerator modes correspond to orbits for which p — oo as n — 00 and the
other half correspond to orbits for which p — —o0 as n — oo. To distinguish between
these two types of accelerator modes we will call the second type retarder modes. The
coexistence of these two types of modes is found, for example, in the web map.

The accelerator modes exist at the points (kxy, jya), the retarder modes exist at the
points (£xg, fygz) and the stable islands (traps) exist at the points (£xr, jyr) of the phase
space where k and j are integers. For simplicity we allow jumps between the accelerator
modes to be only in one direction, say the x direction. Generalization of the model to allow
for jumps in all directions is straightforward.

2.1. A discrete model

The random walk situation outlined above is a discrete time—discrete space random walk
model. The usual random walk model is assumed on a lattice of points one unit distance
apart, 50 that the probability of motion to the feft or to the right is equal to % A second
lattice is embedded on this lattice; this is a lattice of accelerator modes (retarder modes or
traps). When a particle first reaches such a point it is reinjected in the normal lattice with
probability (1 — «) or stays trapped there performing correlated jumps with probability a.
The number m of correlated jumps performed by a particle in such a mode is distributed
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with a probability distribution xf/(m). In what follows we assume that the second lattice
spacings (x4 for example) are large compared with unity.

On the normal lattice the usual random walk equation for p(n, r) which is the probability
that a particle is at lattice site n at time ¢, where n,t € Z, can be written as

p(n.) = Ti(p(a, ) = Sptn — 1, = D+ ptn+ 1t — 1). (1)

This equation simply states that a point of the normal lattice can be reached only from its
nearest neighbours and that it takes a time unit for a particle at n+ 1 or n — 1 to hop to .

2.2. Accelerator modes

Equation (1) is not valid for accelerator modes and their nearest neighbours. An accelerator
mode can be reached not only from its nearest neighbours but also from particles which
were in other accelerator modes.

Any particle that just got into the accelerator mode at (N — s)! ({ = x,) by diffusion,
and is going to spend more than s iterations in this mode, is going to end up in 5 time units
at Ni. This is a process that takes s time units to bé completed, so the rate of particles into
the accelerator mode at N/, at time ¢; due to contributions from other accelerator modes is

}.”_gfll( (NL—sl =1t =5 1)+ p(VI sl + 1,6 ~5 — 1) @

where ar(s) is the probability that a particle stays in an accelerator mode for more than s
iterations.

At any time £, only 7 accelerator modes at most can contribute to N/ becanse partlclcs in
accelerator modes (N — s) with s > ¢ have not had sufficient time to reach N{. However,
at time 7 the particles which just entered (N — s)! at time ¢ — s for s < ¢ and are going to
be trapped there for m iterates (where m > t) can contribute to N7 at 7. Thus the total rate
of particles reaching the point N/ at ¢ from other accelarator modes is

Zw—(slﬂ (NI =sl,t—s). S _ 3)

s=1
The rate out of an accelerator mede is equal to p(NI,t — 1}, since everything that
was in the accelerator mode will have to leave in one iteration (either to go to some other
accelerator mode or back to the diffusion lattice). Thus the probability that a particle is
found at N/ at time ¢ is given by the equation
3 -
pNL Y =Tip(NL 1) +a ) W) Tip(Nl —sl,2 ). )
§s=1 R
where Yis) = yfr(s)/s
We now consider particles that reach the nearest neighbours of the accelerator modes.
First of all it is important to realize that not all the particles which were at N/ at time ¢ — |
can contribute to N/+ 1 and N/~ 1 at time 7. Only those which have finished their sojourn

in the accelerator mode lattice are allowed to get back to the normal lattice. The rate of
particles into the normal lattice from the site N/ at time ¢ is thus given by

? _
pNLt—1)—a ¥ (T p(NI - (s — )i, 1 = s). (5)

s=1

Half of the particles described by equation (5) will go to site NI + 1 and the other half to
site’ N/ — 1. Apart from this, these sites can be reached by normal random walk from sites



6234 A N Yannacopoulos and G Rowlands
NI £ 2. Thus the probability of being at sites N! & 1 at time ¢ is given by

1
p(NI 1,6 =7-;-p(NI:I:2,t— 1+ Ep(Nl,t - 1)

1< N
o5 Z; U(s)Tip(N1 = (s — DI, 1 = 5). ©)
S=
The random walk including the effect of accelerator modes is described by the usual
random walk equations plus an effective source term localized on the lattice of accelerator
modes and their nearest neighbours, that is

1 1
P(ﬂ,f)=§P(ﬂ+1J— 1)+§P(ﬂ ~1,2)+ 8,4 )]

where

!
Sa=a) 8n—NDY ¥ETipn—sl,t~s)
N 5=1
~3a Y 8(n — Ni— 1)2\1:@)?;;;(:: ~(s=DI—1,t—5)
N s=1

I
—%aza(n—NZ+1)Z\II(3)T1p(n—(S~1)H—l,t-—s). &
N s=1
It is an easy exercise to show that this model conserves the total number of particles.

2.3. Retarder modes

The source term associated with the retarder modes, Sg, is similar to the one for the
accelerator modes, only that it would be concentrated on a different infinite lattice (f = xz)
and the terms containing p(n — s} in §4 will have to be replaced by p(r +s!) in Sg. This
is due to the fact that particles in the retarder modes stream in the opposite direction to
particles in the accelerator modes.

24. Traps

The source term corresponding to the effect of traps on the random walk, Sy, is of a slightly
different form. If a particle is caught in a trap, it spends a finite time in the trap before
being released back into the normal random walk. A particle that is driven into a trap by
the random walk will stay on this site for m time units with a probability cr(m} and then
leave the trap to go back to the random walk. Note that r(s) is the first exit probability
distribution which is related to the survival probability 1,5(.9) (that is, the probability that
a particle starting in a trap at ¢+ = 0 is still in the trap at r = 5) by the simple relation
r(s) = —dyr(s)/ds. The probability distribution for particles spending more than time ¢ in
the trap is simply the integral of ¥(s) [8].

The rate at which particles enter the trap at time ¢ is simply that getting into the trap
via diffusion: 7 plnr, t). If a fraction « of all the particles that land in a trap are detained
there for an infinite amount of time, then the rate out at time ¢ would just be a fraction
"{1 — ) of what was in the trap at time ¢ — 1, that is, (1 — &) p(nr,t — 1). However, we
allow for the possibility for particles that were trapped at time ¢ — m to be released from
the trap, back to normal diffusion, at some later time ¢. Such particles will enhance the rate
of particles out of the trap at time ¢. A particle first caught in the trap at time ¢ — 5 will
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be released from the frap with prdbability ar(s), and get back into the normal diffusion.
Hence, the total rate out of the trap is

|4
(1 —a)plnr,t — I')+a2r(s)f'1p(nr,t—s). ®
. s=1
The rate into the nearest neighbours of the trap site ry £ 1 is the normal rate
corresponding to diffusion from rr + 2 plus half the rate out of the trap site. The rate
out of the neighbouring sites is p(nr £ 1,7 — 1) since everything on these sites will have
to leave in one iteration. ’
Following the same reasoning as in the case of the accelerator modes, we see that the
source tevm Sy is of the form {{ = xy)

Sr=¢x23(n~ NI —nr) (p(n t-l)—Zr(s)np(n t—s))

s=1

1) s —Ni—ny—1) (p(n —Lt—1)- Zr(s)?"'lp(n —1,¢ —s)) - (10)
N

s=1

5
_%aZa(n ~Nl—nr+1) (p(n +1,e=1) = rTipn+ 1,2 —s)) .
s=1
Note that in the above source term, all the probability functions are calculated at the same
point because the particle is static for some time after it has been trapped. It is also
straightforward to check that the source term Sy conserves probability. This is consistent
with the fact that a particle is counted when it is temporarily immobilized in a trap and it
is not considered as lost from the system. '

2.5. Continuous model

The discrete model proposed in the previous subsection can be written in a continuous
form which is more useful-for analytical and numerical approximation. We assume that the
distance between two ordinary lattice points is infinitesimal compared with the length scales
of the probability function, but that the distance between two accelerator modes x4 is kept
finite. The time taken by a hop between two normal sites is also taken to be infinitesimal
so that time can be treated as a continuous variable. In order to avoid regions of space
with infinite particle velocities, the jumps between accelerator modes take a finite but small
time. Then in the continuous limit equations (7) and (8) reduce to

5
af DV2p =Sy (11)
where

Sa = 8(x — Nx3)5(y — Nya)
. N

oo - .
x Y W(s)H(s — )(p(x — 524, ¥, 1 — ) = p(x — (s = Dxs, 3.1 — 5)) (12)
=1
- and where H{s—t) denotes the Heaviside function. In the above derivation we have assumed
that the normat random walk, or diffusion, takes place on a two-dimensional lattice but the
accelerator modes make particles stream only in the x direction.
-This equation is a diffusion equation with a localized source term on the accelerator
mode lattice. Note that the discrete model had a source term localized on the accelerator
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maode lattice and the nearest neighbours but here the source term is replaced by one localized
on the accelerator modes only, because these lattice sites are regarded as one.

The continuous form of the source term for the retarder modes, $g, is obtained in an
analoguous fashion.

The continuous analogue of the source term for the traps Sr, is of a slightly different
form, namely

Sr = —% > V8(x ~ Nxr — x)8(y — Lyr — yo)(p(x, . 1)
N.L

=Y rS)plx, 3. £ = sHL. (13)
s=1

Summarizing, we see that both in the discrete and the continuous cases, our basic model
is to consider that over the entire phase space a diffusion equation with a constant diffusion
coefficient is applicable except on the accelerator and retarder modes and the stable islands.
The transfer of particles from one accelerator mode to another and the effect of the trapping
of particles in the stable islands is modelled by adding effective sources localized on the
lattice of structures to the diffusion equation.

3. Solution of the equations

Although equations such as (11) and (12) or their discrete analogues can be solved exactly
(see appendix C), the solution is extremely complicated. Below we give an iterative scheme
based on the smallness of e, which is a reasonable procedure for the case where most of
the phase plane is chaotic. This is particuiarly useful when combined with the fact that
we are only interested in the low moments of the probability function which is all that is
necessary for the calculation of an effective diffusion coefficient. The method is given here
for the continuous case but it is readily extended to treat the discrete case. The details are
given in appendix 2,
We write our equation in the more compact operator form

Dp(x, y,1) = eLp(x, y,) + 8(x — x0)(y — yo) (14)
where D is the diffusion operator and we have introduced a real source of particles at the
point xg, yp. Here Lp(x ¥, t) represents the effective source term and ¢ a small parameter

associated with «. For ¢ = 0 the solution of (14} is just Green’s function of the nomal
diffusion equation and is given by [6]

o ___ D &= x0)*+ G — ) _
P (xu yst)— 4JT(f—tD) exP( D 4(t'—t0) )H(t tO) (15)

where H(t — ty) is the Heaviside function. Then by writing p = p® + ep') + O(e?) we
find

Dp'(x, y,0) = R(x, y,1) (16)

where R(x, y,1) = ﬁp‘”‘(x, y,!) is a known function of x. y, t. The solution to this
equation is given by -

V= f Gix, y, t|x', ¥y, ()R, ¥, ') dx'dy'dr’ (17)

where G(x, y, ¢ | X', y', ') is Green’s function for the operator D andis given by (15) with
x', ¥, t' replacing xq, ¥g, tp. The integrations with respect to x’ and y’ are over the whole
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space and the integration with respect to ¢’ is from O to ¢. Then, to first order, the correction
to the distribution function is given by

pPPx,y,0) = fG(x', Vot 1%, 9. 084 g (PP, ¥, 1)
+8r(pO(x', ¥, £))) dx'dy'dr’ (18)

where we denote by S, r the sum of the source terms corresponding to the accelerator
modes and the retarder modes.

4, Calculatior of the diffusion coefficient

The quantitiés we are primarily interested in are the moments of the probability distribution
Mx, y,t). We define two effective diffusion coefficients D, and Dy by

M) : _ Mayy(®
D.(t) = AT and Dy(t) = Mo (19)
where
My (t) = f p(x, y, ) dxdy = {(x%) (20)
May(6) = f ¥2p(x, y, ) dxedy = {y?) (21
Mo(x) = f (% v, ) dxdy 22)

and the integrations are over the entire space. These diffusion coefficients characterize the

motion over the whole of phase space which may now be taken to be uniform. Importantly,

D, (t) and D,(t) are the diffusion coefficients which are to be compared with values of .
. 2

‘—’fl and (—';-l obtained by iterating the maps in numerical experiments. In particular, we are

interested in the behaviour of D, (r) and D,(r) as functions of time for our simple stochastic
model. :

After some cumbersome algebra we can express the moments in the form
My () =Dr+ A+ A+ Ar (23)
My (1) = D1. ‘ (24)
The functions A,, A, and Ay, which are functions of ¢, are given explicitly in appendix A.
The zeroth moment My is always equal to 1, because of the fact that our model preserves

the number of particles. In appendix B this perturbation method is briefly sketched for the
discrete model, and is shown to give essentially the same results.

5. Results
The diffusion coefficients for the x and y directions have been calculated using the analytical

formulae obtained above (see appendices A and B) for the particular case where the trapping
time distribution is of the form

L ‘ ‘
rimy="y_ Aid(m — M,). (25)

The value of the parameter « is taken to be of the order of 10>, The calculated value of
D, as a function of ¢ for L = 1, for accelerator modes only is shown in figure 2. We note
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that the diffusion coefficient D, (f) shows variation with time in the shape of a large bump
which corresponds to trapping in the accelerator mode for a finite time. The introduction of
L terms in r(¢) produces L bumps in D;. After each bump the diffusion coefficient D.(r)
relaxes slowly to a constant value Dy, larger than D, so that the effect of the particle being
trapped in an accelerator mode for a finite number of iterations leads to the enhancement
of the effective diffusion coefficient measured at large times. An asymptotic analysis of the
model given in appendix D confirms this behaviour.

= ir JEEE SN TTTRE TR LY ICIR IR AT o i T LRI T
1002 — . . —
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Figure 2. Diffusion cozfficient calculated from the results of our model in the case of acceleraior

modes and a delta-function trapping probability distribution.

If we now consider the model including traps only, we find a dip in the diffusion

coefficient; this is illustrated in figure 3.
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Figure 3. Diffusion coefficient calculated from the results of our maodel in the case of traps
only, with a dejta-function trapping probability, The dashed line is the diffusion coefficient in
the case of no traps. The bump is due to the refease of particles from the trap after a time lag,

The oscillations (fluctuations) observed in D, (¢) are similar to the ones found in the
calculated diffusion coefficients obtained from numerical simulations of maps (see figure
1 where the diffusion coefficient is plotted as a function of time for the web map). The
multiple trapping in an accejerator mode which is assumed in our model in order to get
more than one ‘bump’ in our theoretical diffusion coefficient is manifested by the large-
scale structure of these results. In figure 4 we show a single orbit of the web map which
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undergoes multiple irapping in an accelerator mode. Therefore, the multiple delta-function-
type trapping distribution considered here models at least gualitatively, the true particle
dynamics.

1

o 1 2 3 4 5 6 7

Figure 4. A typical single orbit of the web rnap‘- The two small conticuous loops show the
existence of multiple trapping in the accelerator modes that can be modelled by 2 multiple
delta-function trapping distribution.

As expected, the behaviour of Dy(r) does not show any significant fluctuations since
we only allow the accelerator modes to be connected in the x direction. In D, () we just
see the effect of waps.

Ishizaki ef af [7]; using a method based on a statistical mechanics formalism of
dynamical systems, estimated the long-time behaviour of the diffusion coefficient for the case
of the repeated sticking to an accelerator mode. Asswning that the probability for an orbit
to stick in such a mode for longer than 7 iterates is of the power-law form ¥ (n) ~ n~¥—1
forn 3> 1 and 2 > 8 > 1, they found that the diffusion coefficient for orbits that stick to
the accelerator modes is D ~ n2~#. Taking into account these orbits, as well as orbits that
diffuse without gefting trapped, the diffusion coefficient is of the form D(n) = D)+ Dyn*#,

We now apply our method to discuss this case by assuming that ¥ (r) ~ n—# forn > L.
Then, as discussed in section 2.1, this implies ¥(n) ~ 7~V and r(n) ~ n~1-F,

The major difference between the delta function-like distribution function and this power
law is that in the first, detrapping is ensured whereas for a power-law distfibution function
the possibility of trapping exists for an infinite number of iterations. Using the results of
appendices 3 and 4 we find that D, (f) = D, + Dyt #+? as t — oo, which is identical to
the result obtained by Ishizaki er @i [7]. The second moment and the diffusion coefficient,
as calculated by our method for the case of a power-law trapping distribuiion taking into
account only the accelerator modes, are plotted in figure 5 om the entire time scale, Qur
results are in good agreement with those of Ishlzak.l et al [7] obtained by direct iteration of
the standard map.

In the case where only the trap terms are present, the asymptotic time dependence is
of the form Dx(t) Dy + Dyt~* which corresponds to a diffusion coefficient decaying,
since 1 < B < 2, to a constant value D,. Note that the constant terms D, in the above
expressions are not equal to D (the background diffusion constant).

The present model predlcts another interesting result concerning the effect of the form
of the trapping distribution ¥ on the asymptotic time behaviour. Namely, it points to a
connection between the microscopic properties of the random walk, which is actually an
approximation of motion in the cornected chaotic regions of the phase space (trapping
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Figure 5. (2) Second moment and (&) diffusion coefficient for the case of accelerator modes,
considering a distribution function for the trapping times with a power-law decay.

distribution in the lattice sites of the accelerator modes), and its macroscopic and easily
measurable properties, such as the asymptotic time behaviour of the diffusion coefficient.
For an exponentially decaying trapping distribution function ¥ (m) = Aexp(—Am) one
obtains a diffusion coefficient independent of time. That is, the accelerator modes show no
observable effects on the asymptotic time dependence of the effective diffusion coefficient.
The details of the calculation are presented in appendix 4. This is of course in contrast
to the case of a power-law trapping distribution in the accelerator modes where the
diffusion coefficient has a power-law asymptotic behaviour in time and then the effect
of the accelerator modes is shown in the asymptotic behaviour of the random walk.

In a recent paper Zaslavskii and Tippet [9] studied the statistical behaviour of a
dynamical system with long flights (jets) in certain parts of phase space, and focused their
attention on the effect of the Poincaré recurrence statistics on the asymptotic behaviour of
diffusion. According to their extensive numerical results, the diffusion coefficient for the
dynamical system in question approaches a constant large-time value for certain parameter
values for which the Poincaré recuirence statistics follow an exponential law. In contrast,
in the case where pararneter values were chosen in such a way that the Poincaré€ recurrence
statistics are power-law, the diffusion coefficient diverges asymptotically in time, also
following the power law.
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We identify the integral of the Poincaré recurrence probability distribution function in
the parts of phase space associated with the existence of long flights with the trapping
time distribution { (#) in the accelerator modes used in our model. Hence, the results that
Zaslavskii and Tippet [9] obtained by extensive numerical calculations follow immediately
from our analysis. Namely, when the Poincaré recurrence statistics follow a power law,
W(m) and D also follow power laws. When the Poincaré recurrence statistics follow an
exponential law then ¥{m) also follows an eicponential law but D is now constant,

6. Conclusion

We have constructed a simple stochastic model describing the coexistence of accelerator
maodes, stable islands and diffusion for area-preserving chaotic maps. The analytically
predicted forms for the effective diffusion coefficient of this simple model exhibit all the
qualitative behaviour obtained by direct numerical iteration of the maps. The different
asymptotic time behaviours found in various numerical simulations can be explained in-
terms of different trapping probability functions W{(m). ' :

Our model is shown to be consistent in the asymptotic time limit with the work of
Ishizaki et @i [7]. However, our treatment of the problem using rate equations enables us
to obtain results valid for all time whereas the treatrnent in [7] is purely asymptotic.

Furthermore, the asymptotic results of our model are shown to coincide with the
numerical observations of Zaslavskii and Tippet [9] in the case of a chaotic flow in the
presence of jets. These results show that there is a link between the microscopic properties
(the Poincaré recurrence) and the macroscopic properties (the time dependence of the
diffusion coefficient) of the motion.

Finally, even though our model has been formulated for a very simple rectangular lattice
of points having a periodic infinite array of structures (accelerator modes or traps), which is
the situation that corresponds t0 an area-preserving map of the torus, the generalization to
more general lattices is possible and-straightforward, Treating the structures as being on a
lattice of points is of course an approximation but the complexity due to finite size regions
can reasonably be absorbed into the definition of the ¥(m)’s. Although a generalization to
three dimensions is straightforward, the asymptotic results are expected to be different since
for random walks of dimensions higher than two, the probability that a diffusion particle
reaches any particular point, for example a trapped site, is no longer equal to 1.
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Appendix A,

In this appendlx we give explicitly the algebraic forms of the functlons involved in the
calculation of the diffusion coefficients.

1] CNZ a2
fdt ZZW( ) — exp(—(” W +C= ) )H(t’——m) (AD)

L
al m=l d _m
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where xp and yo are the starting points of the particle. If we assume that (xo, yo) 7 (0,0)
then the above expression can be simplified to

! 2 2 ¢ 1]
2m—1 x5+, 2m—172K
A[:fo Z’won) T exp(——— 2} + A Zl — (-;r——l) (A2)
M= m=

where K is the complete elliptic integral and

q;-.exp(_?-_l__m):exp(—flf—). : (A3)

The term A for the retarder modes is similar.

Appendix B,

In this appendix the first-order perturbative solution is obtained for the discrete random
walk model presented in section 2.1. and is shown to agree with the results obtained from
the first-order perturbative solution of the continuous model,

The probability distribution for the discrete model to first order in & is given by

P =33 "Gl —n't —tYSApOW, N+ Sr (PO, ) (B

=0 nr'

where

Gn—n',t—=1t)= f i exp(ik(n — n'))(cos(k))¢~*" dk (B2)

is the Green function for the simple random walk on a lattice and
PO, £y = G’ — ng, ). (B3)

The correction to the probability distribution of the normal random walk, due to the
accelerator modes, to first order in & is then

! n 4
PPy =" | dg(cosq) ™ exp(i(n — NDg) D W ()T p(NI —sl,t —s)

Nt =T s=1
t T .
- dg(cosg)"™" cosqexp(i(n — NDq)
Ny v
p
x Y W& T p(NI— (s — DI, £ ~5) (B4)

3=l

From this equation it is obvious that the Fourier transform of this correction term is

: 4
F(p'") = f(g) =Y _(cosq) " exp(~iNlg) 3 W(s)Ts p(NI — s, —5)
N

s=1

i v
—Y (cosq)'™" cosq exp(—iNig) Y W(s)Tip(NI ~ (s — DI, ¢ —5) (BS)

N s=1
and since we are interested in first-order in & we will substitute the source terms appearing
in this expression by

i

Tiptx,t) = |  dk(cosk)! exp(ikx). (B6)

-
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The correction to the zeroth moment which is the total number of particles due to the
existence of the accelelator modes is given by

AMo= f(0) =0 ' ®B7)

as expected by particle conservation. The correction to the second moment, due to the
existence of the source term related to the accelerator modes, is gwen by

=—f"0) . (B8)

where the double dashes denote differentiation with respect to g. Performing the
differentiations we get

AM, = Z(t — (A1) — Ax() + ZN%%A](;) — A2 = 3 tAx() (B9)

N ) N

where
t m - -

A - Ax(t) = Z W (s) dk(cos k) exp(ik(NI! — sD)(1 — exp(ikl)). B10)
s=1 -

Using the identity ‘
o0 o o0 " ZJTN
Ng;wexp(lkNl) = N;cas(k - T) : (811)

~we can do the summation over N in the equation giving AM; and thus get

AM, = —-ZZ\Il(s)f de—-(cosk)‘”’

t 5=

x exp(—~iksH(l — exp(lkl))é(k —27N/D

2 @' =)
_ZZ: s Y (:(;S(Z”IN)T . ‘(BIZJ

_N=-If2
We finally get for the real part of AM,
t 1
AMy=C1) 3 sW(s)A( —5) — CZZZ \Il(s)A(t —$) (B13)
1 os=l ¥ s=I
where . .
’ /2 (2N (' =s}
Al —5) = =
() NZI cos ( : ) , _ (B14)
_ 2 /2 _
and
C, =22 B15)
Co=P 41,
The function A{#’ — s) is bounded by
AR —5) €1 ' (B16)

for all values of ¢’ — 5. The calculation of A(z’ — 5) shows that it can take both positive
and negative values, but they are distributed in such a way that AM, is always a positive
quantity. Furthermore, for 1 — oo

.&MZ’_VCIZZSEII(S) szzq"(s) - (BIT)

5=l ¥ os=l
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The behaviour of the second moment can now be calculated by using the discrete
relation (B13) without having to go to the continuous limit. It is also seen that the discrete
model gives the same results as the continuous one as far as the results asymptotic in time
are concerned. This can be easily seen by comparing the discrete relation (B17) with the
relation for AM> given in appendix A, obtained for the continuous case. The results are
even better for its Fourier—Laplace transform given in appendix C,

The correction to the normal random walk, due to the presence of the source term
corresponding to traps is calculated in a similar way. The final result is

AM:——aZB(! - +o EZ—B(: ~5) (B18)
t s=1
where
12 )
Bt —5) = Z cos(2r N /1) ™ cos(2e Nnr/1). . (B19)
Ne=—1I/2 '

The function B(t’ —-s) has similar properties to the function A(t' — s) defined above. It is
such that the correction to the second moment due to the trap terms is always negative, thus
giving rise to a decrease in the effective diffusion coefficient as expected. Furthermore for
t— o0

AMy o —art + ozz: Z r{s) : (B20)
1 s=l

It can be easily seen that this is just the discrete counterpart of the continuous relation for
the case of traps, given in appendix C,

Appendix C.

In this appendix we give the complete solution of the continuous diffusion model given in
section 2.2 in Fourier—Laplace space. Even though this solution is not easily transformed
back into real space and used to give results for intermediate times, it can be illuminating as
far as asymptotic results for the second moment of the probability distribution are concerned.
We start by taking into account only the accelerator modes term. If we take the Fourier
transform of the diffusion equation proposed in section 2.2 we get
[r1
—pck 1) + DK p(k, 1) = Ze”‘”’“ > U (P(Nxs = 524, Nyas 1 =)
5s=I
~p(Nxy —(s = Dxa, Nys, t —s)) +8(1). ()
Manipulating the sum in the right-hand side of the above equation we get
fe§
—p(lc n+ Dkzp(k 1) = (1 — exp(—ik,Nx,)) lel(s) explik.sx,)

5=]

x Y exp(kNxa)p(Nxa, Ny, t =) +5(0) (€2)
N

where p(k, ) is the Fourier transform of p(x,t). Since the above model is formally two-
dimensional, &k is considered as a two-dimensional vector, and because the comsnunication -
of the accelerator modes is done in the x direction only, it is the x-coordinate of k that
enters the multiplicative factor in front of the Fourier transform of the source term.
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Writing
o0
p{Nxs, t —35) = f dg egp(—iNqu)ﬁ(q, t—s) ((_33)
and using the fact that o 7
> exp(itk — )xaN) = 8((k — 9)xa — 27 N) : (C4)
ol

we can rewrite cquation (C2) in the form
[¢]
p(k 7)+ DIZk, 1) = (1 —exp(—ik:x4)) Y W(s)

g=1
X exp(ikysxa) Z p"(k —+ i—ZN, t— s) +8(r). (C5)
N }

We now take the Laplace transform of this equation. This gives
up(k, u+ DIk, u) = a(l — exp(~ikex)) ¥ — ikexa)

Zﬁ(k+2—”N, u)-i—l , (C6)
N x4

where the convolution sum has been replaced by an integral. In the above equation, Y@
is the Laplace transform of the function ¥, and j(k, #) is the Fourier—Laplace transform
of p(x, y, ). The approximation of the convoelution sum by an integral does not introduce
new behaviour in the system, since the full dispersion relation of the discrete model using
the discrete Fourier transform and the z-transformt, where one makes no approximations
of this sort, is analogous to that obtained here for the continuous model and gives similar
asymptotic results. The derivation of the dispersion relation for the discrete model is similar
to the one presented here, only it does not involve any of the approximations necessary to
be introduced in the continuous case.

We solve the operator equation for F(k, #) using the iteration scheme

P e, uy = GOk, ) + af ()G ke, uyF(u — ikyxa) xZ pim= “(k+i—”N, u) €7
A

where :
1
0 —
Gk, u) = T DE (C8)
and
flk) =1 —exp(—ikex4) (C9)

As the zeroth-order approximation, we use 5ok, u) Gk, u) which is the Fourier—
Laplace transform of the diffusion equation in the case of no sources (o = 0).

It is clear that this iterative scheme is just the Fourier-Laplace space version of our
perturbative solution of the diffusion equation employed in section 3. The advantage of
using this method in the Fourier-Laplace space for the solution of the dispersion relation
is that we can get iterations of this scheme up to an arbitrary order, thus getting a formal
series in powers of « for the complete solution of the problem. The full solution to the
problem is then

Pk, w) = GOk, i) + Y _ o pull, ) (C10)

r=1
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where
Batk, w) = FRIG K, b —ikexa) D D (k + 4 Zm.)
M.y i=l (Cll)
Gk + A Zm,, u)\ll(u — ks — IAZm )G“(k+ A}:m,, )
i=1 i~1
and A = 27: [xa.
It is easy to see that the full solution to the problem gives
1
(0, u) = " (C12)

which is equivalent to the conservation of particles.
We now use equation (C10) 10 get the Laplace transform for the second moment of the
probability distribution. As is well known, secord moments are given by

d*pik, u)
Mo (u) = ——dk"z"‘——' k=0 - (C13)
Differentiating p{k, u) twice we get
Pk, u) 2D 2D%? Sy Ehak, )
2 - wr DR s Diep et T g (€14
where
2 ~
i’ﬁ#‘l: FIEG . uyB(u — ikexa, w)Fi(k, )
+ FRYGY (&, w) ¥ (U — ikepxa, w)Fi(k, u)
+ GOk, )V (s — Thoxa, w)Fi (R, 1)
+FEYG ke, )V (U — ikex s, )Gk, 1) (C15)
+F (G k. )Y (i — ikexa, u)Ga(k, 1)
+ RGOk, w) ¥ (u — ikox s, )Gk, u)
+F/ (k)G k, ) (u — kexa, w)Galk, )
and
Fitk,u)= Y Hf(k + AZm,)G”(Jc+ A Zm,, )
Moy s=1

i=1 (C16)

x\fi(u —~ iXake —iA ng)Go(k + A Zm.-, u)

i=l i=l

Gk, u) = nf: 2 f'(k + Aim;)G”(k+ASZOm,-)

So=1I M., izl i=l

50
x'-[l(u — ixgke —iA Zma)

f=1

i (831)]

S-[[# f(k+A§m )G“(k+AZm,, )
xlli(uwlx,qu—-1Azm;)GD(k+AZm,, )
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Ga(k, u) is the same as the above but with G¥ instead of f', G3(k, u) is again the same as
the above but with O’ instead of f* and finally G4(k, ) is the same as Fy but the last G°
function is differentiated with respect to k, that is, it is substituted by a GY. It is obvious
that the terms containing f' and W are non-zero only if derivatives with respect to &, are
taken. :

The asymptotic behaviour of the second moment is given in the limit ¥ — O and k = 0.
The terms diverging as u — 0 are those of interest. Terms of the form G%(k+ A > mg,u)
are going to diverge as u — 0, only if }"7_, m; = 0. However, because of the presence
of terms of the form f(3°7_, my} in the senes giving the Laplace transform of the second
moment as ¥ = 0, and of the property f(0) = 0, we are not free to have as many G%
diverging at u — 0 as we like. Observing the structure of the series and taking into account
that £7(0) # 0 and G¥(0) = 0, we see that the only possible diverging terms as # — 0 are
such that

’ 2
Mg,,(u)"—]—+C w“) + 0, LW

.. - (C18)

whereas M,y (1) is just equal to 1 /u The first term in the above sum is simply the normal
diffusive behaviour M, = f. The second term corresponds in real space to a behaviour of
the form

t pr )
AM() = [ j s¥(s)dsdr , (C19)
o Jo : )
and the third term to a behaviour of the form
t . -
AM(t) = f (t — u* W » W (u)du : : (C20)

where « denotes the convolution product.

Thus the full solution to the diffusion model for the second moment in x is given by
equations (CIS)—{CZO)

- In the case where the trap term is introduced into the system, the same procedure should
be followed. By taking the Fourier—Laplace transforms of the continuous equations we get

up(k, u) + DR Pk, u) = --‘;ikzu ~ R@) Y™ plk+ N, u) + 1 (C21)
’ ’ . N
where R(u) is the Laplace transform of r(s)/s and we have assumed that the traps are

situated on a periodic lattice which without loss of generality can be taken as xp + 27 M.
This is an equation for p(k, ) which can be solved using the following iterative scheme

Ak, ) = GOk, u) +_%k2(1 —R@)G Rk, u) Y eNIEM G L Nw)  (€C22)
- N .
where

GOk, u) =

u + D2 (€23)

is the Fourier-Laplace transform of the Green function for the diffusion process when o = 0.

In the above, £ may be considered as a vector or a scalar according to the dimension of the

diffusion process. Since the trapping process does not create a prefered direction, as in the

case of the accelerator modes where the streaming was defining a prefered direction, it is

not of great importance to think of k as a vector. '
Starting with p¥(k, u) = GO(%, u), we get the full solution

plhk,u) =G, u) + = Za‘kz(l — R@)Y Gk, u) Fe(k, u) (C24)

s-.-l
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where
Fk,u) = Z expliln 4+ ...+ ng)xg)k + 12 Gok + g u). ..
X (k + ns -+ ns—g + ...+ 022 GYE +ns +mgmy + .. ng, 1)
XGOk + g + ...+ 1, w) . (C25)
The second moment we are interested in, is equal to — 5”(0, &) which is
P0,u) = G (0, u) + ) a*(1 — RG)*G°(0, w) F; (0, w). (C26)
s=1

We are interested in terms diverging as u — 0, because these are the terms which give
asymptotic contributions in time. It can be seen that the only case where F;(0, &) can
diverge is when n) + ...+ n; = 0 while all the other sums r, 4...+n; # 0 where m = 2.
This gives a divergence of 1/u which is due to the G°(0, u) term.

So, B0, u) diverges as

- + Z (l_ﬂ 27
The correction of the second moment due to the trap terms is then
AM; =— ia‘-(-l_f# (C28)
=1
This gives a contribuation -‘
AMy = ————— Z As R{“)s (C29)

=1
where A, are constant terms that can be obtained from the expansion of (1 — R(u))*.
Transforming back to time, this relation becomes

a .w 1 f‘ r(t) *s ,
__at+§mff (_;_.) dr dt (C30)

where f** denotes the convolution of f, s-times with itself.

AM2(0) =~

Appendix D.

In this appendix, the asymptotic results for Max are obtained for various forms of the
waiting time probability distribution ¥ (s).

I. Power law. Assume the the trapping probability distribution in the accelerator modes
behaves asymptotically with time as a power law

Yrit) ~ =178 t— 00 1<B<2: 193]
Then, from the definition of ¥(t) we see that -

¥~ 10 | (D2)
In the previous appendix it was shown that in the presence of accelerator modes, the second

moment has the following corrections as t— oo

AMP @) ~ f f rslll(s)dsdr (D3)
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and
t
AMP (1) ~ f (t — u)? ¥ » W(u) du (D4)
e

where 7, and ¢, are times for which our asymptotic forms for W (¢) are valid. For ¥ (¢) ~ t~#
as t — 00 it is easy to see that -

M@ ~ 58, : D5)
The convolution ¥ @ ¥ will behave asymptotically as 2'=2# for 1 — oo so that
AMP (@) ~ 1+, : (D6)

For 1 < £ < 2 the dominant contribution as t — ©o is that of Mm.

In the case where trap terms are introduced the asymptotic behavmur for the correctmns_
to the second moment is

MMPO =2 o7
and ’
Ma(t) ~ f ' f r (L(:—))*S dr dt’ (D8)
which for r(¢) ~ ¢t~1-F az t : oo behaves as ,
Ma(t) ~ 178 (D9)

which for every s 2 1 decaytoOas t — co.
2.Exponential form. If the distribution function v (¢) decays exponentially then in general
¥r(f) will decay as exp(—At) as t — oo.

In that case

¢ s
AMY ~ [ f sexp(—As)ds df ~ exp(—Ait) (D10)

So the term AM;" will not contribute to ¢ — oo in the case of an exponential trapping

distribution. The same happens with the term AMS®. If y(r) ~ ™" exp(—Az) then
Vi) < f(t) =exp(—At) for ¢t > 1 and ¥ « W) < f » f(t) = texp(—Ar). Then

I
AMP < f (¢ — u)?u exp(—Au)du (DI

and this last integral decays exponentially fo zero as + — oo, So AM,; ) again will
not contribute to the second moment for ¢+ — o0 in the case of an cxponennal trapping
distribution.

The same is true for the correction term due to the presence of traps.
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