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A model for the coexistence of diffusion and accelerator 
modes in a chaotic area-preserving map 

A N Yannacopoulos and G Rowlands 
Physics Depamnent. University of Warwick, Coventry CV4 TAL, UK 

Received 26 April 1993. in final fm 16 August i993 

Abstmct A random walk model for the coexistence of diffusion and accelerator modes for a 
chaotic two-dimensional area-preseming map is wnsrmcted and solved analyiidy in order to 
explain the time behaviour of Ute numerically calculated diffision coefficient for such m p r  

1. Introduction 

Consider an area-preserving chaotic map in x ,  y which can be brought into a doubly periodic 
form, that is, can be written as a map of the unit torus T = [0,2n] x [O, %I. For such maps 
there exist parts of phase space called accelerator modes [l] where ordered motion occurs 
rather than stochastic motion. This ordered motion corresponds to constant acceleration 
of particles to remote parts of phase space and this leads to anomalous enhancement of 
the diffusion coefficient as calculated for such maps [2,3]. Examples of maps where such 
behaviour oocurs are the well known standard map [Z] or the web map [4,51. 

Our aim is to investigate $e effect of the existence of such accelerator modes on 
the transport through phase space for an area-preserving map (two-dimensional symplectic 
map). The motivation is to explain the fluctuations observed in the numerically calculated 
diffusion coefficient ( p z )  /2n where p denotes displacement and n the number of iterates. 
Usually the asymptotic value of D for la& n is constant However, for many maps the 

~mtio shows oscillatory behaviour and/or variation proportional to nu for large n. A typical 
example of the variation of D with n, obtained by numerical iteration of the web map is 
shown in figure 1. Of course the times of interest are longer than the time needed for the 
effect of initial conditions to be damped away. 

2. Formulation of the problem 

The variation of the diffusion coefficient D with n can have very complicated behaviour. 
We associate this behaviour with the presence of accelerator modes and with regions of 
non-chaotic behaviour in the phase space. However, the exact structure of the phase space 
is extremely complicated and some simplification is necessary. 

The phase space is modelled as follows. It is assumed to be infinite and two-dimensional. 
In the space there exists a periodic array of points which corresponds to accelerator modes 
and which forms an infinite orthogonal lattice of points. Whenever a particle reaches such a 
point it can make a finite jump to another point of the lattice (that is, to another accelerator 
mode) rather than diffuse to neighbounng points in the space. We also consider the effects 
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Figure 1. A typical numerical calculation of the diffusion coefficient 8s a function of time for 
a map containing accelerator modes. 

of the existence of islands surrounding stable periodic points that act as traps in the diffusion 
process through phase space. The stable periodic points also form an infinite orthogonal 
lattice in phase space. (The infinity of the lattices of both the accelerator modes and the 
traps arises because of the double periodicity of the original map.) On every other part of 
phase space, the motion is approximated by a diffusion process with a constant diffusion 
coefficient D. 

Thus particles diffuse through phase space until they reach the vicinity of  an accelerator 
mode or a stable island (trap). There they can be trapped and start performing finite jumps 
to other points of the lattice or remain trapped, according to whether the lattice point is an 
accelerator mode or a stable island. Trapping at lattice points occurs for a finite number of 
iterations of the map m, with a probability distribution $(m). Then detrapping occurs and 
the particles are allowed to diffuse again until they are brought by diffusion to the vicinity 
of another accelerator mode or island. 

Half the accelerator modes correspond to orbits for which p -+ m as n -r 00 and the 
other half correspond to orbits for which p -+ -m as n -+ 03. To distinguish between 
these two types of accelerator modes we will call the second type retarder modes. The 
coexistence of these two types of modes is found, for example, in the web map. 

The accelerator modes exist at the points (kxA, j y , ) ,  the retarder modes exist at the 
points (kxR, jyR) and the stable islands (traps) exist at the points (kxr, j y r )  of the phase 
space where k and j are integers. For simplicity we allow jumps between the accelerator 
modes to be only in one direction, say the x direction. Generalization of the model to allow 
for jumps in all directions is straightforward. 

2.1. A discrete model 

The random walk situation outlined above is a discrete time-discrete space random walk 
model. The usual random walk model is assumed on a lattice of points one unit distance 
apart, so that the probability of motion to the left or to the right is qua l  to $. A second 
lattice is embedded on this lattice; this is a lattice of accelerator modes (retarder modes or 
traps). When a particle first reaches such a point it is reinjected in the normal lattice with 
probability ( I  - (U) or stays trapped there performing correlated jumps with probability U. 
The number m of correlated jumps performed by a particle in such a mode is distributed 
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with a probability distribution $(m). In what follows we assume4hat the second lattice 
spacings ( X A  for example) are large compared with unity. 

On the normal lattice the usual random walk equation for p(n, f )  which is the probability 
that a particle is at lattice site n at time t ,  where n ,  t E Z ,  can be written as 

p ( n , t )  = f I ( p ( n , t ) ) = f p ( n - l , t -  l ) + ; p ( n + l , t -  I). (1) 

This equation simply states that a point of the normal lattice can be reached only from its 
nearest neighbours and that it takes a time unit for a particle at n + 1 or n - 1 to hop to n.  

2.2. Accelerator modes 

Equation ( I )  is not valid for accelerator modes and their nearest neighbours. An accelerator 
mode can be reached not only from its nearest neighbours but also from particles which 
were in other accelerator modes. 

X A )  by diffusion, 
and is going to spend more than s iterations in this mode, is going to end up in s time units 
at NI.  This is a process that takes s time units to be completed, so the rate of particles into 
the accelerator mode at NI,  at time f; due to contributions from other accelerator modes is 

Any particle that just got into the accelerator mode at ( N  - s ) l  ( 1  

where (I$@) is the probability that a particle stays in an accelerator mode for more than s 
iterations. 

At any time E, only f accelerator modes at most can contribute to N l  because particles in 
accelerator modes ( N  - s ) l  with s > t have not had sufficient time to reach N I .  However, 
at time f the particles which just entered ( N  - s)l at time t - s fo r s  < t and are going to 
be trapped there for m iterates (where m z t )  can contribute to NI at t .  Thus the total rate 
of particles reaching the point NI at f from other'accelarator modes is 

I 

C m f l p ( N I - s l , t - s ) .  S 
$4 

(3) 

The rate out of an accelerator mode is equal to p(N1,  t - I),  since everything that 
was in the accelerator mode will have to leave in one iteration (either to go to some other 
accelerator mode or back to the diffusion lattice). Thus the probability that a particle is 
found at NI at time t is given by the equation 

- S l .  t - 

whek Y(s) = ~ ( s ) / s .  
We now consider particles that reach the nearest neighbours of the accelerator modes. 

First of all it is important to realize that not all the particles which were at NI at time t - 1 
can contribute to NI + I and N1-  1 at time t .  Only those which have finished their sojoum 
in the accelerator mode lattice are allowed to get back to the normal. lattice. The rate of 
particles into the normal lattice from the site NI at time t is thus given by 

t 

p ( N 1 ,  t - 1 )  - a x  Y ( s ) f l p ( N l  - (s - 1)1, t - s). (5) 

Half of the particles described by equation (5) will go to site NI + 1 and the other half to 
site~N1- I .  Apart from this, these sites can be reached by normal random walk from sites 

s= I 
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NJ iz 2. Thus the probability of being at sites NI & 1 at time t is given by 

A N Yannacopoulos and G Rowlands 

1 1 

~2 2 
p(NI * 1, I )  = - p ( N l  f 2, I - 1) + - A N I ,  t - 1) 

1 '    CY^ C ' P ( s ) f i p ( N l -  (S - 1)1, t - s). 
S d  

The random walk including the effect of accelerator modes is described by the usual 
random walk equations plus an effective source term localized on the lattice of accelerator 
modes and their nearest neighbours, that is 

(7) 
1 1 

p ( n , t ) = ~ p ( n + l , t - l ) + - p ( n - 1 , t ) + S A  2 

where 

. I  

-+CY c6(n - NI - I) q ( s ) f l p ( n  - (s - 1)l- 1, t - s) 
N S=l 

I - ~ c Y C ~ ( ~ - N ~ + I ) C ' P ( ~ ) ~ , ~ ( ~ - ( S -  1 ) [ + 1 , t - s ) .  (8 )  
N 5= I 

It is an easy exercise to show that this model conserves the total number of particles. 

2 3 .  Retarder modes 

The wurce term associated with the retarder modes, SR, is similar to the one for the 
accelerator modes, only that it would be concentrated on a different infinite lattice (1 X R )  
and the terms containing p(n - sl) in SA will have to be replaced by p(n + sl )  in SR. This 
is due to the fact that particles in the retarder modes stream in the opposite direction to 
particles in the accelerator modes. 

2.4. Traps 

The source term corresponding to the effect of traps on the random walk, Sr. is of a slightly 
different form. If a particle is caught in a trap, it spends.a finite time in the trap before 
being released back into the normal random walk. A particle that is driven into a trap by 
the random walk will stay on this site for m time units with a probability arr(m) and then 
leave the trap to go back to the random walk. Note that r(s) is the first exit probability 
distribution which is related to the survival probability $(s) (that is, the probability that 
a particle starting in a trap at I = O~is still in the trap at t = s) by the simple relation 
r ( s )  = -d$(s)/ds. The probability distribution for particles spending more than time t in 
the trap is simply the integral of $(s) [SI. 

The rate at which particles enter the trap at time t is simply that getting into the trap 
via diffusion: f l p ( n 7 .  t). If a fraction CY of all the particles that land in a trap are detained 
there for an infinite amount of time, then the rate out at time t would just be a fraction 
(I  - C Y )  of what was in the trap at time t - 1, that is, (1,- c r ) p ( n ~ ,  t - 1). However, we 
allow for the possibility for particles that were trapped at time t - m to be released from 
the trap, back to normal diffusion, at some later timet. Such particles will enhance the rate 
of particles out of the trap at time t. A particle first caught in the trap at time f - s will 
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be released from the trap with probability ar(s), and get back into the normal diffusion. 
Hence, the total rate out of the trap is 

t 

( I  -a)p(nr,t - ~ j + a . C r ( s ) ~ i p ( n r , t - s ) .  (9) 
S=l 

The rate into the nearest neighbours of the trap site nT f 1 is the normal rate 
corresponding to diffusion from nT f 2 plus half the rate out of the trap site. The rate 
out of the neighbouring sites is p(nT f I ,  t - 1) since everything on these sites will have 
to leave in one iteration. 

Following the same reasoning as in the case of the accelerator modes, we see that the 
source term ST is of the form (I xy) 

t 

- r a c 6 ( n  - N i - n r -  1) - l , t  - 1) - c r ( s ) ? 1 p ( n  - l , t  - s )  
N s=1 

t 

- $ x c S ( n  - NI -nr  + 1) p(n + l , t  - 1) - x r ( s ) ? ~ p ( n  + l , t  - s )  
N S=1 

Note that in the above source term, all the probability functions are calculated at the same 
point because the particle is static for some time after it has been trapped. It is also 
straightforward to check that the source term ST consewes probability. This is consistent 
with the fact that a particle is counted when it is temporarily immobilized in a trap and it 
is not considered as lost from the system. 

25. Continuous model 

The discrete model proposed in the previous subsection can be written in a continuous 
form which is more useful for analytical and numerical approximation. We assume that the 
distance between two ordinary lattice points is infinitesimal compared with the length scales 
of the probability function, but that the distance between two accelerator modes X A  is kept 
finite. The time taken by a hop between two normal sites is also taken to be infinitesimal 
so that time can be treated as a continuous variable. In order to avoid regions of space 
with infinite particle velocities, the jumps between accelerator modes take a finite but small 
time. Then in the continuous limit equations (7) and (8) reduce to 

aP 
at 
- - DV’p = aSa 

- s) - p ( x  - (s - 1) 

and where H(s-1) denotes the Heaviside function. In the above derivation we have assumed 
that the normal random walk, or diffusion, takes place on a two-dimensional lattice but the 
accelerator modes make particles stream only in the x direction. 

This equation is a diffusion equation with a localized source term on the accelerator 
mode lattice. Note that the discrete model had a source term localized on the accelerator 
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mode lattice and the nearest neighbours but here the source term is replaced by one localized 
on the accelerator modes only, because these lattice sites are regarded as one. 

The continuous form of the source term for the retarder modes, SR, is obtained in an 
analoguous fashion. 

The continuous analogue of the source term for the traps, Sr, is of a slightly different 
form, namely 

Sr = -- 

A N Yannacopoulos and G Rowlands 

ff 
V21Kx - N X r  - X O ) ~ ( Y  - LYT - YO)(P(X,  Y .  t )  

N.L 

Summarizing, we see that both in the discrete and the continuous cases, our basic model 
is to consider that over the entire phase space a diffusion equation with a constant diffusion 
coefficient is applicable except on the accelerator and retarder modes and the stable islands. 
The transfer of particles from one accelerator mode to another and the effect of the trapping 
of particles in the stable islands is modelled by adding effective sources localized on the 
lanice of structures to the diffusion equation. 

3. Solution of the equations 

Although equations such as (11) and (12) or their discrete analogues can be s'olved exactly 
(see appendix C). the solution is extremely complicated. Below we give an iterative scheme 
based on the smallness of (I, which is a reasonable procedure for the case where most of 
the phase plane is chaotic. This is particularly useful when combined with the fact that 
we are only interested in the low moments of the probability function which is all that is 
necessary for the calculation of an effective diffusion coefficient. The method is given here 
for the continuous case but it is readily extended to treat the discrete case. The details are 
given in appendix 2 .  

' 

We write our equation in the more compact operator form 

h p ( x , y , t )  = E L P ( X , Y , t ) + 8 ( x  - x o ) N y  - y o )  (14) 
where 6 is the diffusion operator and we have introduced a real source of particles at the 
point XO, yo. Here L p ( x ,  y ,  t )  represents the effective source term and E a small parameter 
associated with a. For E = 0 the solution of (14) is just Green's function of the normal 
diffusion equation and is given by 161 

where H ( t  - to)  is the Heaviside function. Then by writing p = pLo' + cp"' + O(G*) we 
find 

bp" ' (x,  y ,  t )  = R(x ,  Y ,  t )  (16) 
where R(x,  y ,  t) = ip'O'(x, y, t )  is a known function of x .  y, t .  The solution to this 
equation is given by 

p"' = 1 G(x,  y. tlx', y', t ' )R(x ' ,  y', t') dx'dy'dt' (17) 

where G(x,  y .  t I x', y', t') is Green's function for the operator 6 and is given by (15) with 
x', y'. I' replacing XO, yo. to. The integrations with respect to x' and y' are over the whole 
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space and the integration with respect to t' is from 0 to t. Then, to first order, the correction 
to the distribution function is given by 

I01 r I I 
P " ' ( X ,  y, t )  = 1 G ( X ' ,  Yf.tf  I x ,  y- l)(SA,R(p (1 1 y > t )) 

+ST(p'O'(x', y', t'))) dx'dy'dr' (18) 

where we denote by Sa;R the sum of the source terms corresponding to the accelerator 
modes and the retarder modes. 

4. Calculation of the diffusion coefficient 

The quantities we are primarily interested in are the moments of the probability distribution 
p(r .  y. t). We define two effective diffusion coefficients Dx and D, by 

, 

and the integrations are over the entire space. These diffusion coefficients characterize'the 
motion over the whole of phase space which may now be taken to be uniform. Importantly, 
DA(t)  and D y ( t )  are the diffuSion coefficients which are to be compared with values of 
$ and % obtained by iterating the maps in numerical experiments. In particular, we are 
interested in the behaviour of Dx( t )  and Dy(t )  as functions of time for our simple stochastic 
model. 

After some cumbersome algebra we can express the moments in the form 

Mz,.r(t) = Dt + A I  + A Z  + A7 

Mz,,(t)  = D t .  

The functions A , ,  A? and AT,  which are functions off ,  are given explicitly in appendix A. 
The zeroth moment MO is always equal to 1, because of the fact that our model preserves 
the number of particles. In appendix B this perturbation method is briefly sketched for the 
discrete model, and is shown to give essentially the same results. 

5. Results 

The diffusion coefficients for the x and y directions have been calculated using the analytical 
formulae obtained above (see appendices A and B) for the particular case where the trapping 
time distribution  is^ of the form 

L 
r (m)  = CAicS(m - Mi), 

i 

The value of the parameter (Y is taken to be of the order of The calculated value of 
D, as a function off for L = 1, for accelerator modes only is shown in figure 2. We note 



6238 

that the diffusion coefficient D,(t) shows variation with time in the shape of a large bump 
which corresponds to trapping in the accelerator mode for a finite time. The introduction of 
L terms in r ( f )  produces L bumps in 0,. After each bump the diffusion coefficient D,(r) 
relaxes slowly to a constant value DI, larger than D, so that the effect of the particle k i n g  
trapped in an accelerator mode for a finite number of iterations leads to the enhancement 
of the effective diffusion coefficient measured at large times. An asymptotic analysis of the 
model given in appendix D confirms this behaviour. 

A N Yannncopoulos and G Rowlands 
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Flgure 1. Diffusion ~oefficienr calculated from the resuls of our model in the case of accelemor 
modes and a delta-function Wpping probability distribution. 

Figure 3. Diffusion wefficient calkated from the results of our model in lhe case of Wps 
only, wilh a delta-function trapping probability. The dashed line is the diffusion coefficient in 
the case of no traps. The bump is due to h e  relea% of partlclicles from the Imp afler a time lag. 

The oscillations (fluctuations) observed in &(t) are similar to the ones found in the 
calculated diffusion coefficients obtained from numerical simulations of maps (see figure. 
I where the diffusion coefficient is plotted as a function of time for the web map). The 
multiple trapping in an accelerator mode which is assumed in our model in order to get 
more than one 'bump' in our theoretical diffusion coefficient is manifested by the large- 
scale structure of these results. In figure 4 we show a single orbit of the web map which 
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undergoes multiple trapping in an accelerator mode. Therefore, the multiple delta-function- 
type trapping disuibution considered here models, at least qualitatively, the true particle 
dynamics. 

7 
I 

Figure 4. A typical single orbit.of ule web map. The two small continuous Imps show the 
exismce of multiple trapping in h e  accelerator modes that can be modelled by a multiple 
delta-function trapping distribution. 

As expected, the behaviour of D Y @ )  does not show any significant fluctuations since 
we only allow the accelerator modes to be connected in the x direction. In DJt) we just 
see the effect of traps. 

Ishizaki et ai [7]: using a method based on a statistical mechanics formalism of 
dynamical systems, estimated the long-time behaviour of the diffusion coefficient for the case 
of the repeated sticking to an accelerator mode. Assuming that the probability for an orbit 
to stick in such a mode for longer than n iterates is of the power-law form @(n) - n-@-I' 
for n >> 1 and 2 z= ,3 > 1, they found that the diffusion coefficient for orbits that stick to 
the aCcelerator modes is D - d - 0 .  Taking into~account these orbits, as well as orbits that 
diffuse without getting trapped, the diffusion coefficient is of the form D(n) = DI +DZn2-8. 

We now apply our method to discuss this case by assuming that $(n) - n-8 for n >> I. 
Then, as discussed in section 2.1, this implies $(n) - n-(P-') and r(n) - n-l-p. 

The major difference between the delta function-like distribution function and this power 
jaw is that in the first, detrapping~is ensured whereas for a power-law distiibution function 
the possibility of trapping exists for an infinite number of iterations. Using the results of 
appendices 3 and 4 we find that Ox@) = Dl + D,r-~+* as t + 00, which is identical to 
 the result obtained by Ishizaki er a1 [7]. The second moment and the diffusion coefficient, 
as calculated by our method for the case of a power-law trapping distribution taking into 
account  only the accelerator modes, are plotted in, figure 5 om the entire time scale. Our 
results are in good agreement with those ofIshizaki er al [7] obtained by direct iteration of 
the standard map. 

In the case where only the trap terms are present, the asymptotic time dependence is 
of the form & ( r )  = DI + DZt-P.which corresponds to a diffusion coefficient decaying, 
since 1 < ,3 -2 2, to a constant value DI. Note that the constant terms D, in the above 
expressions Fe not equal to D (the background diffusion constant). 

The present model predicts another interesting result conceming the effect of the form 
of the trapping distribution $ on the asymptotic time behaviour. Namely, it points to a 
connection between the microscopic properties of the random walk, which is actually an 
approximation of motion in the connected chaotic regions of the phase space (trapping 
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Figure 5. (a) Second momenl and (b)  diffusion wfficient for the ease of accelerator modes, 
considering a diswibution function for the mpping times with a power-law decay. 

distribution in the lattice sites of the accelerator modes), and its macroscopic and easily 
measurable properties, such as the asymptotic time behaviour of the diffusion coefficient 
For an exponentially decaying trapping distribution function +(m) = A exp(-Am) one 
obtains a diffusion coefficient independent of time. That is, the accelerator modes show no 
observable effects on the asymptotic time dependence of the effective diffusion coefficient. 
The details of the calculation are presented in appendix 4. This is of course in contrast 
to the case of a power-law trapping distribution in the accelerator modes where the 
diffusion coefficient has a power-law asymptotic behaviour in time and then the effect 
of the accelerator modes is shown in the asymptotic behaviour of the random walk. 

In a recent paper Zaslavskii and Tippet [9] studied the statistical behaviour of a 
dynamical system with long flights (jets) in certain parts of phase space, and focused their 
attention on the effect of the Poincad recurrence statistics on the asymptotic behaviour of 
diffusion. According to their extensive numerical results, the diffusion coefficient for the 
dynamical system in question approaches a constant largetime value for certain pammeter 
values for which the Poincar6 recurrence statistics follow an exponential law. In contrast, 
in the case where parameter values were chosen in such a way that the Poincad recurrence 
statistics are power-law, the diffusion coefficient diverges asymptotically in time, also 
following the power law. 
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We identify the integral of the Po incd  recurrence probability distribution function in 
the parts of phase space associated with the existence of long flights with the trapping 
time distribution $[m)  in the accelerator modes used in our model. Hence, the results that 
Zaslavskii and Tippet 191 obtained by extensive numerical calculations follow immediately 
from our analysis. Namely, when the Poincar.6 recurrence statistics follow a power law, 
q [ m )  and D also  follow^ power laws. when the P o i n d  recurrence statistics follow an 
exponential law then q ( m )  also follows an exponential law but D is now constant. 

6. Conclusion 

We have constructed a simple stochastic model describing the coexistence of accelerator 
modes, stable islands and diffusion for area-preserving chaotic maps. The analytically 
predicted forms for the effective diffusion coefficient of this simple model exhibit all the 
qualitative behaviour obtained by direct numerical iteration of the maps. The different 
asymptotic time behaviours  found^ in various numerical simulations can be explained in 
terms of different trapping probability functions Y(m). 

Our model is shown to be consistent in the asymptotic time limit with the work of 
Ishizaki et a1 [7]. However, our treatment of the problem using rate equations enables us 
to obtain results valid for all time whereas the treatment in [7] is purely asymptotic. 

Furthermore, the asymptotic, results of our model are 'shown to coincide with the 
numerical observations of Zaslavskii and Tippet [9] in the case of a chaotic flow in the 
presence of jets. These results show that there is,a link between the microscopic properties 
(the Poincdrecurrence) and the macroscopic properties (the time dependence of the 
diffusion coefficient) of the motion. 

Finally, even though our model has been formulated for a very simple rectangular lattice 
of points having a periodic infinite amy of structures (accelerator modes or traps), which is 
the situation that corresponds to an area-preserving map of the tom, the generalization to 
more general lattices is possible and-straightforward,  treating the structures as being on a 
lattice of points is of course an approximation but the complexity due to finite size regions 
can reasonably be absorbed into the definition of the '@(m)'s. Although a generalization to 
three dimensions is straightfonvird, the asymptotic res& are expected to-be different since 
for random walks of dimensions higher than two, the probability that a diffusion particle 
reaches any particular point, for example a trapped site, is no longer equal to 1. 
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Appendix A. 

In this appendix we give explicitly the algebraic forms of the functions involved in the 
calculation of the diffusion coefficients. . .  
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where xo and YO are the starting points of the particle. If we assume that (XO, yo) # (0,O) 
then the above expression can be simplified to 

A N Yannacopoulos and G Rowlands 

where K is the complete elliptic integral and 

The term A2 for the retarder modes is similar. 

Appendix B. 

In this appendix the fint-order perturbative solution is obtained for the discrete random 
walk model presented in section 2.1. and is shown to agree with the results obtained from 
the first-order perturbative solution of the continuous model. 

The probability distribution for the discrete model to first order in.a is given by 

where 

G(n - n', f - t') = exp(ik(n - n'))(cos(k))(f-r') dk (B2) L 
is the Green function for the simple random walk on a lattice and 

p'o'(n', f') = G(n' -no .  r'). (B3) 
The correction to the probability distribution of the normal random walk, due to the 

accelerator modes, to first order in (I is then 

r' 
x C Y(s)T1p(NI - (s - 1)l. t' - s) (B4) 

5=1 

From this equation it is obvious that the Fourier transform of this correction term is 

and since we are interested in first-order in (Y we will substitute the source terms appearing 
in this expression by 
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The correction to the zeroth moment which is ihe total number of particles due to the 

cB7) 
existence of the accelelator modes is given by 

AM0 = f(0) = 0 
as expected by particle conservation. The correction to the second moment, due to the 
existence of the source term related to the accelerator modes, is given by 

where the double dashes denote differentiation with respect to 4. 
differentiations we get 

AM2 = -f”(O) (B8) 
Performing the 

where 
I’ II 

S=l -II 
AI(+  A&’) = c Y ( s ) /  dk(co~k)“’-~’exp(ik(NI -sl))(l -exp(ikl)). 

Using the identity 

5 exp(ikN1) = 
N=-CC 

we can do the summation over N in the equation giving AM2 and thus get 

d2 I I’ 

A M z = - C Z Y ( s ) [  d k ~ s ( c o s k ) ” - *  
I‘ s=1 N 

x exp(-iksl)(l - exp(ikl))&(k - 2 n N / l )  

We finally get for the real part of AM2 
I 1’ f ,’ 

A M 2  = CI c z s Y ( s ) A ( t ’ -  S) - C Z ~ ~ Y ( S ) A ( ~ ’  -s )  

where 
1‘ s-1 

, 
I’ s - 1  

and 
c, = 212 

c2 = 12 + 1. 

The function A(t’ - s) is bounded by 
I A(t’-s)  1<l 

for all values of I’ - s. The calculation of A(t’ - s) shows that it can take both positive 
and negative~values, but they are distributed in such a way that AM2 is always a positive 
quantity. Furthermore, for t + 00 
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The behaviour of the second moment can now be calculated by using the discrete 
relation (B13) without having to go to the continuous limit. It is also s&n that the discrete 
model gives the same result?, as the continuous one as far as the results asymptotic in time 
are concemed. This can be easily seen by comparing the discrete relation (B17) with the 
relation for AM2 given in appendix A, obtained for the continuous case. The results are 
even better for its Fourier-Laplace transform given in appendix C. 

The correction to the normal random walk, due to the presence of the source term 
corresponding to traps is calculated in a similar way. The final result is 

I' r (s )  I 

AM2 = -a E(t' - 1) + (Y cc -E@' - s) 
S 

I' I' s=1 

where 
112 

B(f' - 5 )  = cos(2nN/I)'-'cos(ZnNn7/[). 
N=-I/2 

The function E(t' --s) has similar properties to the function A(t' - s) defined above. It is 
such that the correction to the second moment due to the trap terms is always negative, thus 
giving rise to a decrease in the effective diffusion coefficient as expected. Furthermore for 
f + O o  

It can be easily seen that this is just the discrete counterpart of the continuous relation for 
the case of traps, given in appendix C. 

Appendix C. 

In this appendix we give the complete solution of the continuous diffusion model given in 
section 2.2 in Fourier-Laplace space. Even though this solution is not easily transformed 
back into real space and used to give results for intermediate times, it can be illuminating as 
far as asymptotic results for the second moment of the probability distribution are concemed. 

We start by taking into account only the accelerator modes term. If we take the Fourier 
transform of the diffusion equation proposed in section 2.2 we get 

Ill 

N -1 

a 
at 
-iXk,t)+Dk'j(k,t) = ~ e i k N X A ~ Y ( s ) ( p ( N x ~  -sxa,NyA,f -s )  

-p(NxA - (s - 1)XAs N ~ A ,  f -s))  + 8 ( t ) .  (Cl) 
Manipulating the sum in the right-hand side of the above equation we get 

where p(& t )  is the Fourier transform of p ( x ,  t ) .  Since the above model is formally two- 
dimensional, b is considered as a two-dimensional vector, and because the communication 
of the accelerator modes is done in the x direction only, it is the x-coordinate of k that 
enters the multiplicative factor in front of the Fourier transform of the source term. 
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Writing 
m 

~ ( N x A ,  t ~ s) = dq exp(-iNxAq)j?(q, t - s) (C3) 1, 
~. 

and using the fact that 

x e x p ( i ( k  - q)xn N) = 6((k - q ) x A  - 2xN) (a) 
N 

we can rewrite equation (a) in the form 

We now take the Laplace transform of this equation. This gives 
ufi(k, U) + Dk2j?(k, U) = a( l  -exp(-ik,xn))@(u - ik,xA) 

where the convolution sum has been replaced by an integral. In the above equation, @ ( U )  

is the Laplace transform of the function q, and fi(k, U) is the Fourier-Laplace transform 
of p(x .  y .  f). The approximation of the convolution sum by an integral does not introduce 
new behaviour in the system, since the full dispersion relation of the discrete model using 
the discrete Fourier transform and the z-transform, where one makes no approximations 
of this sort, is analogous to that obtained here for the continuous model and gives similar 
asymptotic results. The derivation of the dispersion relation for the discrete model is similar 
to the one presented here, only it does not involve any of the approximations necessary to 
be introduced in the continuous case. 

We solve the operator equation for j (k ,  U)  using the iteration scheme 

j?'"')(k, U )  = U )  + orf (k)Go(k, u)G(u - i k x x ~ )  x ~j("-') 
N 

where 
- 

0 1 
G (k, U) = - 

U + Dk2 
and 

f (k) = 1 - exp(-ik,xA) (C9) 
As the zeroth-order approximation, we use j?'(k, U) = Go(k, U) which is the Fourier- 

Laplace transform of the diffusion equation in the case of no sources (or = 0). 
It is clear that this iterative scheme is just the Fourier-Laplace space version of our 

perturbative solution of the diffusion equation employed in section 3. The advantage of 
using this method in the Fourier-Laplace space for the solution of the dispersion relation 
is that we can get iterations of this scheme up to an arbitrary order, thus getting a formal 
series in powers of 01  for the complete solution of the problem. The full solution to the 
problem is then 
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and A = 2n/xA. 
It is easy to see that the full solution to the problem gives 

(CW 

We now use equation (CIO) to get the Laplace transform for the second moment of the 

1 

which is equivalent to the conservation of particles. 

probability dishibution. As is well known, second moments are given by 

B(0, U) = - 
U 

Differentiating S(k, U) twice we get 

+ f-and2fin(h U )  ( ~ 1 4 )  
2 0  2D2k2 - _  - d21i(k, U) 

where 

dk2 dk2 (U + Dk2)2 + (U + Dk2)' n=l 
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G2(k, U) is the same as the above but with G@ instead off', Gs(k, U )  is again the same as 
the above but with G' instead of f' and finally G4(k, U) is the same as FI but the last Go 
function IS differentiated wth reseect to k, that is, it is substituted by a G'. It is obvious 
that the terms containing f' and V' are non-zero only if derivatives with respect to kx are 
taken. 

The asymptotic behaviour of the second moment is given in the limit U -+ 0 and IC = 0. 
The terms diverging as U -+ 0 are those of interest. Terms of the form Co(k+A E=, m,, U )  

are going to diverge as U --f 0, only if E:==, ms = 0. However, because of the presence 
of terms of the form f ( X = ,  m,) in the series giving the Laplace transform of the second 
moment as k = 0, and of the property f (0) = 0, we are not free to have as many Gos 
diverging at U + 0 as we like. Observing the structure of the series and taking into account 
that f '(0) # 0 and G@(O) = 0, we see that the only possible diverging terms as U + 0 are 
such that 

whereas MzY(u) is just equal to 1/u2. The first term in the above sum is simply the normal 
diffusive behaviour M2 f .  The second term corresponds in real space to a behaviour of 
the form 

and the third term to a behaviour of the form 

AM2(r) = lt(r - U)+ *V(u)du (C20) 

where * denotes the convolution product. 
Thus the full solution to the diffusion model for the second moment in x is given by 

equations (C18HC20). 
In the case where the trap term is introduced into the system, the same procedure should 

be followed. By taking the Fourier-Laplace transforms of the continuous equations we get 

(C21) uc(k ,  U )  + Dk2$(k, U )  = -P(1 - Nu)) Ce"" j (k  + N, U) + 1 

where R(u)  is the Laplace transform of r ( s ) / s  and we have assumed that the traps are 
situated on a periodic lattice which without loss of generality can be taken as xo + 2nN. 

This is an equation for j ( k ,  U) which can be solved using the following iterative scheme 

i)l"+fl(k, U) =  GO(^, U) + -k2(1 - R ( u ) ) c ~ ( ~ ,  U )  CeiNql$m)(k + N, U) 

01 

N 2 

(C22) 
01 

N 2 

where 
. I  
u + Dk2 

Co(k ,  U )  = - 
is the Fourier-Laplace transform of the Green function for the diffusion process when 01 = 0. 
In the above, k may be considered as a vector or a scalar according to the dimension of the 
diffusion process. Since the trapping process does not create a prefered direction, as in the 
case of the accelerator modes where the streaming was defining a prefered direction, it is 
not of great importance to think of k as a vector. 

Starting with fi(O'(k, U) = Go@, U), we get the full solution 

(C24) 
l o o  
2 

j ( k ,  U) = Go(k,  U) + - ~ u s k 2 ( 1  - R(u))"Co(k, u)F,(k, U) 
s=l 
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where 

Fs(k,u) = -E exp(i(ni +...+ n,)xo)(k+n,)'G'(k+n,.u) ... 

A N Yannacopoulos and G Rowlands 

n,..n, 

x(k  + n, + ns-l + . . . + n2)'G0(k + n, + nS-l + . . . + n2, U) 

xG'(k + n ,  +...+ nl ,  U) (C25) 
The second moment we are interested in, is equal to - jY(O,  U) which is 

m 
y(0,  U) = G'"(0, U) + cd(l - R(u))"C'(O, u)F,(O, U). (C26) 

We are interested in terms diverging as U + 0, because these are the terms which give 
asymptotic contributions in time. It can be seen that the only case where F,(O. U) can 
diverge is when n I + . . . + n, = 0 while all the other sums n,  + . . . + n, # 0 where m 2 2. 
This gives a divergence of I/u which is due to the G'(0, U )  tm. 

$=I 

So, jY(0, U) diverges as 
1 (1 - R ( U ) ) ~  

U2 
-- + C a s  

uz $4 

The correction of the second moment due to the trap terms is then 

This gives a contribution 

where A, are constant terms that can be obtained from the expansion'of (1 - R ( u ) ) ~ .  
Transforming back to time, this relation becomes 

* where f̂ " denotes the convolution of f, s-times with itself. 

Appendix D. 

In this appendix, the asymptotic results for MIX are obtained for various forms of the 
waiting time probability distribution ~(s). 
1. Power law. Assume the the trapping probability distribution in the accelerator modes 
behaves asymptotically with time as a power law 

$( t )  - t - l -8  t -+ Co 1 < B < 2; 01) 
Then, from the definition of Y(f) we see that 

Y ( t )  - 1-8 t + Co. (D2) 
In the previous appendix it was shown that in the presence of accelerator modes, the second 
moment has the following corrections as t+ 03 
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where r, &d ic are times for which our asymptotic forms for Y ( t )  are valid. For Y (t) - t -P 
as t -P 00 it is easy to see that 

The convolution Y Y will behave asymptotically as tl-’fi for f + 00 so that 

e 2 the dominant contribution as t 4 00 is that of M;’. 

M:”(t) - t3-8. (D5) 

AM;”(t) - t4-’B. (W 
For 1 e 

to the second moment is 
In the case where trap terms are introduced the asymptotic behaviour for the corrections~ 

ff 
t AM2 ~ ( t )  N -- 

1 -ff 
I l l  

and 

which for r ( t )  - t-l-p as t -+ 00 behaves as 
M2(t) - t’-SP 

which for every s 2 1 decay to 0 as t --f CO. 

2.Exponentialform. If the distribution function $(r) decays exponentially then in general 
$( t )  will decay as~exp(-At) as f + M. 

In that case 

AM:’) - [ s’ s exp(-As)& df - exp(-At) ( D W  

So the term AM:” will not contribute to t + 00 in the case of an exponential trapping 
distribution. The same happens with the term AM;”. If Jr(r) - t-”exp(-At) then 
Y ( t ) c f ( t ) = e x p ( - - h t ) f o r t > l  a n d Y * Y ( i ) c f * f ( t ) = t e x p ( - h f ) .  Then 

AM? e [ ( I  - u)’uexp(-Au)du (D11) 

and this last integral decays exponentially to zero as t -+ 00. So AM;’’ again will 
not contribute to the second moment for f -+ 00 in the case of an exponential trapping 
distribution. 

The same is true for the conection term due to the presence of traps. 
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